
Superoptimization of
WebAssembly Process Graphs
By: Dennis Sprokholt

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

Superoptimization: Program Optimization
● Peephole Optimizations1:

○ y := 0 ⇒ y := y XOR y

○ y := x+x ⇒ y := x << 1

○ y := x+1 ⇒ y := -~x

1Warren, H.S. (2013). Hacker's delight. Pearson Education.

Superoptimization - Optimizing Compilers

Figure adapted from: Schkufza, E., Sharma, R., & Aiken, A. (2013). Stochastic superoptimization. ACM SIGARCH Computer Architecture News, 41(1), 305-316.

Superoptimization - Non-obvious Optimization

Figure adapted from: Schkufza, E., Sharma, R., & Aiken, A. (2013). Stochastic superoptimization. ACM SIGARCH Computer Architecture News, 41(1), 305-316.

Superoptimization - Enumerative Search

Figure adapted from: Schkufza, E., Sharma, R., & Aiken, A. (2013). Stochastic superoptimization. ACM SIGARCH Computer Architecture News, 41(1), 305-316.

Superoptimization - Enumerative Search Issues
● There are many programs:

○ Assume 50 available instructions: 50d programs of size d

■ Program of size 47:

5047 ≈ 1080 ≈ Number of atoms in the universe

● Program Equivalence Checking is Undecidable
○ Preserve input/output relation

○ Includes side-effects

Superoptimization - Existing Solutions
● Superoptimize many small fragments in a program

● Sliding window

● Search space pruning

● Stochastic traversal

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

Research Goals
● “Superoptimize” larger control flow structures

○ Loops

Research Goals: Examples
● Count 1-bits in 32-bit word

fn popcount(mut x: u32) -> u32 {
 let mut count = 0;
 while x != 0 {
 if (x & 1) != 0 {
 count += 1;
 }
 x >>= 1;
 }
 return count;
}

● Many ISAs have: popcnt32 instruction

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

WebAssembly
● Superoptimize WebAssembly programs

● Targets the Web

● Abstraction over machine code

● Secure (isolated address space)

● Compact (stack machine)

● Low-level (fast)

● Portable

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

Process Graphs - SMT Solvers
● SAT Solvers

○ P∨Q ⇒ {P↦T, Q↦T}
○ P∧¬P ⇒ UNSAT

● SMT Solvers
○ Satisfiability Modulo Theories
○ x < y ∧ y < 10 ⇒ {x↦3, y↦5}
○ 10 < x ∧ x < 3 ⇒ UNSAT

● Z3

Process Graphs
fn f(x: u32) {
 let mut i = 0;
 let mut y = 0;
 while i < x {
 y = y + i;
 i = i + 1;
 }
 if i < x {
 foo(y);
 } else {
 bar(y);
 }
}

Process Graphs - Concrete Execution

Process Graphs - Configurations

Process Graphs - Configurations

Process Graphs - Process Trees & Driving
● Popcount: ● Driving: Simulate execution with partial

knowledge of the input

● Expand the graph into a tree

○ Eliminate unreachable branches

○ Replace constants

● When all infinite branches are eliminated, the

tree is finite

● For popcount: Observe at most 32 iterations

Process Graphs - Synthesis
● Extract properties from the instructions in the finite tree

○ Types of arithmetic instructions (e.g., 32-bit ints, 64-bit ints)

○ Memory Operations

○ Called functions

○ . . .

● Brute force for some time (and timeout)

○ Only linear instructions sequences (no backward/forward branches)

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

Results - Small Artificial Programs

Results - Large Programs
File Timeout Constants

Replaced
Branches
Eliminated

Time Taken Output File
Size %

bitwise_IO 1000ms 5 / 394 1 / 43 3 sec 99.56%

lua_mini 1000ms 6 / 1,280 0 / 78 ~ 2 min 99.76%

raytracer 200ms N/A 29 / 2,277 ~ 2 min 99.48%

raytracer 200ms 115 / 27,682 30 / 2,277 ~ 30 min 99.35%

lua 200ms N/A 15 / 5,125 ~ 4 min 99.78%

lua 200ms 47 / 48,383 15 / 5,125 ~ 45 min 99.75%

z3 200ms N/A 803 / 487,686 ~ 10 hours 99.06%

z3 (aborted) 50ms 807 / 2,086,551 437 / 262,036 ~ 20 hours N/A

Results - Large Program Partial Evaluation
● Conditional Zero Constant. Hard to find without SMT solver

a = mem[x];

b = a & 0xFF;

if a != 0 {

 b = 0;

 ...

} else {

 a = b;

}

// b dead

a = mem[x];

if a != 0 {

 b = 0;

 ...

} else {

 a = 0;

}

// b dead

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

Conclusion
● Convert programs into process graphs

○ Store symbolic information at the nodes

○ Partial evaluation with SMT solver works (if you can spare the optimization time)

○ Currently only ~1% improvements

● Driving trees with an SMT solver may be a good idea
○ Great results on small (artificial) programs

○ Currently too costly for larger programs

Contents
● Superoptimization

● Research Goals

● WebAssembly

● Process Graphs

● Results

● Conclusion

● Future Work

Future Work
● Find profitable fragments in larger programs (in reasonable time)

○ Heuristic (on static properties)

○ Profiling

● Abstract Interpretation

End - Questions?

Comic: https://xkcd.com/303/

Extra - Abstract Interpretation
if a > b {

 if b > c {

 let x = (a <= c); // Always false. Tell constant propagation

 …

 }

}

Extra - Bubblesort

