Dependency Injection in Rust

Dennis Sprokholt

November 2022

1 Introduction

For my recent Rust programs, I use a variant of dependency injection' to achieve inversion
of control. In this note, I describe my application of that design pattern in Rust.

As an illustrative example, consider a program that performs the “heavy computation”
of finding the nezt prime number:

e We load our previous prime p,, from cache
e We compute the next prime py1

e We store p,41 to the cache

Our program could look as follows:

fn main() {
let c¢ = PrimeComputer;
c.run();

}
struct PrimeComputer;

impl PrimeComputer {
fn run(&self) {
let p0 = read_prime_from_cache();
let pl = compute_next_prime(p0);
store_prime_to_cache(pl);
}
}

fn read_prime_from_cache() -> u64 {
fs::read_to_string("cache.txt").ok()
.and_then(|s| s.parse::<u64>().ok())
.unwrap_or(2) // reads 2 if empty

fn store_prime_to_cache(n: u64) {
let mut file = File::create("cache.txt").unwrap();
write! (&mut file, "{}", n).unwrap();

}

Lspecifically, constructor injection

We decided to use the file cache.txt as our cache. Simultaneously, we established a strong
coupling between our domain logic (i.e., computing primes) and filesystem. We could depict
this as:

Figure 1: Problematic Structure

PrimeComputer

fllesystem

Problem — The PrimeComputer is aware of its dependency on the filesystem as cache.

2 Solution

Instead, we prefer our domain logic to be uncorrupted by interaction with peripheral systems.
We don’t want to build our application around the filesystem; So we invert the structure.
Intuitively, we give the filesystem as a plugin to our domain logic. That also enables us
to “swap out” our filesystem for another caching mechanism; For instance, a database.
Consider this alternative structure:

Figure 2: Inverted Structure

database filesystem

\ 4 \ 4

PrimeComputer

There, PrimeComputer is unaware of the specific caching mechanism used. Instead, our
filesystem (or rather, “filesystem object”) depends on PrimeComputer. Let’s go through an
implementation in Rust. We define our PrimeComputer as follows:

prime_computer.rs

trait Cache {
fn read_prime(&self) -> u64;
fn store_prime(&self, p: u64);

}
struct PrimeComputer< C: Cache > { cache: C }

impl< C: Cache > PrimeComputer< C > {
pub fn new(cache: C) -> Self {
PrimeComputer { cache }

}

pub fn run(&self) {
let p0 = self.cache.read_prime();
let pl = compute_next_prime(p0);
self.cache.store_prime(pl);
}
}

Here, PrimeComputer is aware it has some cache. However, it is unaware what our cache is;
It could be a file, a database, or something entirely different. We decouple our dependency
on a specific caching mechanism from our domain logic. We inject our dependency (i.e., the
filesystem cache) by passing it as an argument to our domain logic. In our main.rs we do
that as follows:

main.rs

fn main() {
let fs_cache = FilesystemCache;
let ¢ = PrimeComputer: :new(fs_cache);
c.run();

3
struct FilesystemCache;

impl Cache for FilesystemCache {
fn read_prime(&self) -> u64 {
fs::read_to_string("cache.txt").ok()
.and_then([s| s.parse::<u64>().ok())
.unwrap_or(2) // reads 2 if empty

fn store_prime(&self, n: ué4d) {
let mut file = File::create("cache.txt").unwrap();
write! (&mut file, "{}", n).unwrap();
}
}

Specific to Rust, we use static dispatch for Cache. That monomorphs (i.e., specializes) our
PrimeComputer with FilesystemCache. Effectively, we end up with an executable that has
performance identical to our original program (at least, it should).

	Introduction
	Solution

