
Tutorial: Docker for Research Artifacts

Dennis Sprokholt

March 2022

1 Introduction

Docker packs programs together with their dependencies. Through OS-level virtualization it ensures
the program runs anywhere1. While a plethora of Docker tutorials exists online, most teach you to
deploy web applications. Instead, I explain how Docker can build reusable research artifacts.

2 Docker Overview

We consider two of Docker’s most predominant objects – which are often confused with each other:

• image - An image is a read-only snapshot of a system, which contains an Operating System2,
program dependencies, and your program. You can share an image with the world.

• container - A container is a writable copy of an image, whose function is similar to the storage
drive in your machine. A container is runnable. Note that a container which is not running
still differs from an image.

In the following sections I explain how to setup a Hello World program – written in C – inside a
Docker container. (See hello.c in Appendix A)

3 Dockerfiles

A Dockerfile contains the build instructions for an image. Let’s construct it in steps.

• Docker images build upon other images. Often you start with an Operating System image, such
as a build of the Debian distro.

FROM debian:bullseye -slim

• Secondly, we install the build dependencies. In Debian, we install packages with apt. libc6-dev
contains the C standard libraries, while gcc can compile our C program.

RUN apt -get update &&\

apt -get install -y --no -install -recommends libc6 -dev gcc &&\

rm -rf /var/lib/apt/lists/*

1Assuming identical CPU architectures: https://docs.docker.com/desktop/multi-arch/
2Actually, it virtualizes the OS: https://www.docker.com/resources/what-container

1

https://docs.docker.com/desktop/multi-arch/
https://www.docker.com/resources/what-container

As we don’t have terminal access to the image while building, -y automatically confirms in-
stallations. --no-install-recommends prevents installing recommended dependencies. On the
final line, we remove the local package cache, as it unnecessarily increases our image size.

• Thirdly, we tell Docker to execute future commands from inside the image’s root/ directory.

WORKDIR root/

• Then we copy hello.c from the current host directory into the image (at root/hello.c).

COPY hello.c .

• Finally, we call gcc to build our program.

RUN gcc hello.c -o hello

You can see the complete Dockerfile in Appendix B.

4 Building the image

The Dockerfile describes the build process. We still have to execute it. Inside the directory with
the Dockerfile (and hello.c), execute:

$ docker build . --tag=helloworld

This command executes the steps described in the Dockerfile and creates a repository named
helloworld with an image tagged latest.

Your image should now appear in Docker’s image list:

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

helloworld latest d32c405f284a 10 seconds ago 237MB

5 Running the image

Inside our Dockerfile, we told Docker to compile our hello.c with gcc into the hello executable.
Now our image contains the executable file root/hello. We execute it inside a container:

$ docker run -it --rm helloworld ./hello

Hello World!

The command docker run spawns a container from the helloworld image, and executes ./hello
inside. The -it flag ensures the container runs in interactive terminal mode; It effectively links your
terminal to the container’s stdin and stdout. The --rm flag removes the container (but not the
image) from your storage drive upon exiting.

Now you are familiar with the basics and should be able to create images for your own artifacts.
Good luck!

2

(Extra) Multi-stage builds

When publishing artifacts, I prefer to keep Docker images small; This avoids unnecessarily wasting
time on downloads. Multi-stage builds3 can help with that.

For our program, building hello required gcc, but executing it does not. We can create another
clean Docker image and copy the executable into it.

Multi-stage Dockerfile

FROM debian:bullseye -slim AS build

... # the same as before

FROM debian:bullseye -slim

COPY --from=build /root/hello /root/hello

WORKDIR root/

In this case, dropping the build dependencies reduces the image from 237MB to 80MB.
See Appendix C for the complete Dockerfile.

(Extra) Tips and Tricks

• Pick small base images - This ensures your final images are smaller. For instance, Debian4

has large images (e.g., bullseye - 124MB) and small images (e.g., bullseye-slim - 80MB).
These “slim” variants exclude unnecessary files, such as man pages.

• Keep images around - Building with the same Dockerfile at different times may produce
different images. If the behavior of a command changes in the future, it will have a different
effect on your image. Consider:

$ apt -get install gcc

While it installs version 10.2.1 now, next year it could install version 11.0.0. A research
artifacts should reproduce the same results for years to come, and dependencies are not always
backward compatible. The Dockerfile does not guarantee reproducible builds. However, the
image is a system snapshot. So, keep it around.

• Export your image - Share your artifact with a .tar.gz archive, which you create with:

$ docker save helloworld | gzip --best > artifact.tar.gz

Others then import it with:

$ docker load -i artifact.tar.gz

Note that it maintains its original image name helloworld:latest.

3See also: https://docs.docker.com/develop/develop-images/multistage-build/
4See also: https://hub.docker.com/_/debian

3

https://docs.docker.com/develop/develop-images/multistage-build/
https://hub.docker.com/_/debian

A Hello World Program

hello.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char **argv) {

printf("Hello World!\n");

return EXIT_SUCCESS;

}

B Dockerfile

Dockerfile

FROM debian:bullseye -slim

RUN apt -get update &&\

apt -get install -y --no -install -recommends libc6 -dev gcc &&\

rm -rf /var/lib/apt/lists/*

WORKDIR root/

COPY hello.c .

RUN gcc hello.c -o hello

C Multi-stage Dockerfile

Multi-stage Dockerfile

FROM debian:bullseye -slim AS build

RUN apt -get update &&\

apt -get install -y --no -install -recommends libc6 -dev gcc &&\

rm -rf /var/lib/apt/lists/*

WORKDIR root/

COPY hello.c .

RUN gcc hello.c -o hello

FROM debian:bullseye -slim

COPY --from=build /root/hello /root/hello

WORKDIR root/

	Introduction
	Docker Overview
	Dockerfiles
	Building the image
	Running the image
	Hello World Program
	Dockerfile
	Multi-stage Dockerfile

