Agda, Full Adders, and Flags

Dennis Sprokholt

July 2022

1 Introduction

Machine instruction semantics are often difficult to grasp. Especially the effect of an instruction on CPU flags is mysterious, which is often merely described in prose. For me, rigorous formal definitions often dispel this veil of mystery. To achieve that, we define instruction semantics from the ground up in a principled way. This is a small step-by-step guide on doing so in Agda. In particular, we look at ripple carry circuits and the semantics of the carry and overflow flags.

2 Bits

We first define bits.

```
data Bit:Set where
    O : Bit
    | : Bit
```

Then, we define several common bitwise operators:

```
not : Bit }->\mathrm{ Bit
not O = I
not I = O
```

$$
\begin{aligned}
& \text { or }: \text { Bit } \rightarrow \text { Bit } \rightarrow \text { Bit } \\
& \text { or O } y=y \\
& \text { or } I \quad y=1
\end{aligned}
$$

```
and: Bit }->\textrm{Bit}->\textrm{Bit
and O y = O
and I }y=
```

```
xor: Bit }->\mathrm{ Bit }->\mathrm{ Bit
xor O y = y
xor | y = not y
```

Now, let's look at their corresponding logic gates:

3 Adder Circuits

Now we will gradually build more complex circuits. Consider the half adder in Figure 1.

Figure 1: Half Adder

The carry bit represents the "leftover bit" in a higher position. For instance, in the decimal system, $8+7=5$ carrying 1 ; It represents 15 , but that does not fit in a single digit.

We define this circuit in Agda as:

```
half-adder: Bit }->\mathrm{ Bit }->\mathrm{ Bit }\times\mathrm{ Bit
half-adder x y = (and x y, xor x y)
```

Using two half adders, we can construct a full adder, as shown in Figure 2.

Figure 2: Full Adder

Which we similarly compose of half-adders in our Agda definition:

$$
\begin{aligned}
& \text { full-adder: Bit } \rightarrow \text { Bit } \rightarrow \text { Bit } \rightarrow \text { Bit } \times \text { Bit } \\
& \text { full-adder } x y c_{i n}= \\
& \text { let }\left(c_{1}, s_{1}\right)=\text { half-adder } x y \\
& \quad\left(c_{2}, s_{2}\right)=\text { half-adder } s_{1} c_{i n} \\
& \text { in (or } \left.c_{1} c_{2}, s_{2}\right)
\end{aligned}
$$

Table 1 contains the full corresponding truth table; It should help get an intuition for the carry bit $\left(c_{\text {out }}\right)$.

Table 1: Full Adder Truth Table

x	y	$c_{\text {in }}$	$c_{\text {out }}$	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4 Subtractor Circuits

Similarly to adders, we can define subtractors. Consider the half-subtractor in Figure 3.
Figure 3: Half Subtractor

A subtractor does not have a carry bit. It has a borrow bit instead. The half-subtractor's truth table is given in Table 2.

Table 2: Half Subtractor Truth Table

x	y	borrow	difference
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Clearly, $0-0=0,1-0=1$, and $1-1=0$. The notable case is $0-1$, whose difference doesn't fit in a single bit. Intuitively, we borrow a bit from the next position - which represents 2 - and subtract from it. Its result is thus $2-1=1$. Of course, we need to remember that we borrowed a bit. We define the half subtractor in Agda as:

```
half-subtractor: Bit }->\mathrm{ Bit }->\mathrm{ Bit }\times\mathrm{ Bit
half-subtractor x y = (and (not x) y, xor x y)
```

Similarly to the full adder, we compose two half-subtractors to create a full-subtractor, which we give in Figure 4.

Figure 4: Full Subtractor

Which in Agda becomes:

$$
\begin{aligned}
& \text { full-subtractor : Bit } \rightarrow \text { Bit } \rightarrow \text { Bit } \rightarrow \text { Bit } \times \text { Bit } \\
& \text { full-subtractor } x y b_{\text {in }}= \\
& \text { let }\left(b_{1}, d_{1}\right)=\text { half-subtractor } x y \\
& \quad\left(b_{2}, d_{2}\right)=\text { half-subtractor } d_{1} b_{i n} \\
& \text { in }\left(\text { or } b_{1} b_{2}, d_{2}\right)
\end{aligned}
$$

Table 3 is its truth table.

Table 3: Full Subtractor Truth Table

x	y	$b_{\text {in }}$	$b_{\text {out }}$	difference
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

The value of $b_{i n}$ represents the "remembered" borrow bit by subtractions in the previous (lower) position. Intuitively, the full subtractor computes $x-y-b_{i n}$.

5 Higher-Order Circuits

One could observe that the composition of half adders into full adders (Figure 2) is identical to the composition of half subtractors into full subtractors (Figure 4). Hence, we can generalize over that structure, resulting in "higher-order circuits", if you will.

```
-- | Converts half adders/subtractors to their full counterparts
lift : ( Bit \(\rightarrow\) Bit \(\rightarrow\) Bit \(\times\) Bit \()\)
    \(\rightarrow(\) Bit \(\rightarrow\) Bit \(\rightarrow\) Bit \(\rightarrow\) Bit \(\times\) Bit \()\)
lift \(f x y c_{i n}=\)
        let \(\left(c_{1}, s_{1}\right)=f x y\)
            \(\left(c_{2}, s_{2}\right)=f s_{1} c_{\text {in }}\)
    in (or \(c_{1} c_{2}, s_{2}\) )
full-adder \(_{2}=\) lift half-adder
full-subtractor \(_{2}=\) lift half-subtractor
```

Of course, these new versions are definitionally equal to our previous functions:

```
_ : full-adder }\equiv\mp@subsup{\mathrm{ full-adder }}{2}{
_ = refl
_ : full-subtractor }\equiv\mathrm{ full-subtractor }
_= refl
```


6 Bitvectors

With addition and subtraction on bits, we can extend these operations to bitvectors. First, we define bitvectors (of length n) as:

```
Bv:\mathbb{N}->\mathrm{ Set}
Bv n = Vec Bit n
```

So, now we can - for instance - construct the bitvector (of length 4) representing ${ }^{\mathrm{A}} 5_{10}$, which is 0101_{2} in binary. In Agda that becomes:

```
five: Bv 4
five = O :: | :: O :: | :: []
```


7 Ripple Carry Circuits

Now we compose the bitvector adders from the full-adders for bits. Intuitively, the carry "ripples upwards", to the higher-positioned bits. Figure 5 illustrates this.

Figure 5: Ripple Carry Adder (of length 4)

The "ripple borrow subtractor" has the same structure. Hence, in the Agda implementation we can generalize over that "ripple"-structure.

```
-- | Lifts a full-adder/subtractor to its bitvector variant.
ripple : \(\quad(\mathrm{Bit} \rightarrow \mathrm{Bit} \rightarrow \mathrm{Bit} \rightarrow \mathrm{Bit} \times \mathrm{Bit})\)
    \(\rightarrow(\mathrm{Bv} n \rightarrow \mathrm{Bv} n \rightarrow \mathrm{Bit} \rightarrow \mathrm{Bit} \times \mathrm{Bv} n)\)
ripple \(f[][] c_{i n}=\left(c_{i n},[]\right)\)
ripple \(f(x:: x s)(y:: y s) c_{i n}=\)
    let \(\left(c_{1}, x s+y s\right)=\) ripple \(f\) xs ys \(c_{i n}\)
        \(\left(c_{2}, x+y\right)=f x y c_{1}\)
    in \(\left(c_{2}, x+y:: x s+y s\right)\)
ripple-adder ripple-subtractor: \(\mathrm{Bv} n \rightarrow \mathrm{Bv} n \rightarrow \mathrm{Bit} \rightarrow \mathrm{Bit} \times \mathrm{Bv} n\)
ripple-adder \(=\) ripple full-adder 2
ripple-subtractor \(=\) ripple full-subtractor 2
```

[^0]
8 Specification Testing

We can now test our specification:

```
-- \# Adder
-- | \(6+3+0=9\)
```



```
_ = refl
-- | \(9+11+1\) = \(21=16+5\)
```



```
- = refl
-- \# Subtractor
-- | \(6-3-0=3\)
: ripple-subtractor
```



```
= refl
-- | \(9-11-1=-3=(-16)+13\)
_ : ripple-subtractor (। :: О :: О :: | :: []) (। :: О :: | :: | :: []) | 三 (। , | :: | :: О :: | :: [])
- = refl
```

The subtraction in the final test case resolves to a negative number in the decimal system $\left(-3_{10}\right)$. Yet, that has no representation as bitvector ${ }^{\mathrm{B}}$. Note that its decimal representation is only given for illustrative purposes; It is irrelevant for the semantics of bitvector subtraction, as the circuits precisely capture it.

Working with a proof assistant does not guarantee correctness; After all, our specifications could be erroneous. Checking the correctness of a specification is a matter of validation w.r.t. intended characteristics. Hence, we provide tests.

9 Flags

Now that we have correct specifications for bitvector addition and subtraction, we can include specifications for their effect on CPU flags. We discuss the semantics - in both x86 and Armv8 - for:

- the carry flag (CF) and
- the overflow flag (OF).

[^1]
9.1 Carry Flag

The carry flag for addition is identical between the two architectures.

```
add-CF:Bv n}->\textrm{Bv}n->\textrm{Bit
add-CF x y = proj}
```

However, for subtraction their carry flags are inverted. The x86 manual[1] states:
Carry flag - Set if an arithmetic operation generates a carry or a borrow out of the most significant bit of the result; cleared otherwise. ...

Hence, after executing the SUB instruction, the carry flag represents the borrow bit:

```
x86-sub-CF: Bv n}->\textrm{Bv}n->\textrm{Bit
x86-sub-CF x y = proj1 (ripple-subtractor x y O)
```

The Armv8 manual[2, C6.2.318-320] states:

```
operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');
PSTATE.<N,Z,C,V> = nzcv;
```

Which means that it defines SUBS with "AddWithCarry". Hence, it also affects the flags as such. Our specification follows the Arm manual:

```
Armv8-sub-CF: Bv n}->\mathrm{ Bv n Bit
Armv8-sub-CF x y = proj}1(\mathrm{ (ripple-adder }x\mathrm{ (map not }y\mathrm{ )I)
```

We can show that the Armv8 CF is the inverse (not) of x86's CF:

```
CF-inv: }\forall(xy:Bvn)->x86-sub-CF x y \equiv not (Armv8-sub-CF x y)
-- proof omitted
```


9.2 Overflow Flag

The overflow flag is similar to the carry flag. Whereas the carry flag signifies that the result of unsigned arithmetic does not fit in a register, the overflow flag signifies that the signed result does not fit. Integer operations in machines are not inherently signed or unsigned. x86 and Armv8 set flags for both cases; It is up to the programmer to read the appropriate flag for their use case.

The x86 manual[1] states:
Overflow flag - Set if the integer result is too large a positive number or too small a negative number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This flag indicates an overflow condition for signed-integer (two's complement) arithmetic.

The Arm manual[2] similarly states:
Overflow Condition flag. Set to:

- 1 if the instruction results in an overflow condition, for example a signed overflow that is the result of an addition.
- 0 otherwise.

For addition, both architectures behave similarly. We compute the overflow flag by xoring the incoming and outgoing carry bit of the most-significant adder ${ }^{\mathrm{C}}$:

```
add-OF: Bv (suc n) }->\textrm{Bv}(\mathrm{ suc n) }->\textrm{Bit
add-OF (x :: xs) (y :: ys) =
    let }\mp@subsup{c}{in}{}=\mp@subsup{\operatorname{proj}}{1}{}(\mathrm{ ripple-adder xs ys O)
        cout }=\mp@subsup{\operatorname{proj}}{1}{}(\mathrm{ (full-adder x y y cin)
    in xor cin cout
```

This satisfies both prose specifications, which we can test as follows:

```
-- | (-3) + (-6) = -9 = (-8) + (-1) => overflow
_ : add-OF (। :: | :: O :: | :: []) (| :: O :: | :: O :: []) \equiv |
_ = refl
-- | (-5) + 1 = -4 => no overflow
_ : add-OF (। :: О :: | :: | :: []) (O :: O :: O :: | :: []) \equiv O
_ = refl
```

However, for subtraction, their specifications are different. In x86, subtraction's OF follows from the definitions of subtraction, which we modelled with the ripple subtractor:

```
x86-sub-OF: Bv (suc n) }->\textrm{Bv}(\mathrm{ suc n) }->\textrm{Bit
x86-sub-OF (x :: xs) (y :: ys)=
    let bin = proj}1 (ripple-subtractor xs ys O), 
        bout = proj}1(\mathrm{ (full-subtractor x y b bin)
    in xor bin bout
```

[^2]Two test cases that demonstrate it makes sense：

```
-- | (-3) - \(6=-9=(-8)-1=>\) overflow
_ : x86-sub-OF (। :: | :: O :: | :: []) (O :: | :: | :: O :: []) 三।
_ = refl
-- | (-1) - 7 = -8 => no overflow
_ : x86-sub-OF (| :: | :: | :: | :: []) (0 :: | :: | :: | :: []) 三 0
\(-=\) refl
```

In Arm－like before－subtraction is defined in terms of addition．The definition of OF^{D} for subtraction also builds on addition，which we modelled with the ripple adder：

```
Armv8-sub-OF: Bv (suc n) }->\textrm{Bv}(\mathrm{ suc n) }->\textrm{Bit
Armv8-sub-OF (x :: xs) (y :: ys)=
    let }\mp@subsup{c}{in}{}=\mp@subsup{\operatorname{proj}}{1}{(}\mathrm{ (ripple-adder xs (map not ys) I)
        c _ { o u t } = \operatorname { p r o j } _ { 1 } ( \text { full-adder x (not y) cin)}
    in xor cin cout
```

Interestingly，though both are computed differently，the value of OF is identical between x86 and Armv8（for the same operands）：

```
OF-eq : }\forall(xy:\operatorname{Bv}(\mathrm{ suc }n))->\mathrm{ x86-sub-OF x y 三Armv8-sub-OF x y
-- proof omitted
```


10 Conclusion

We formalized the semantics of two bitvector operations in Agda（being addition and sub－ traction）．We did this in a principled way，by analyzing the circuits and modeling our semantics accordingly．We also looked at－and modelled－the carry and overflow flags for the x86 and Armv8 architectures．Both architectures set the flags similarly，but differ on the carry flag for subtraction．Additionally，we provided some test cases to validate our models．

More generally，this document aims to serve as a brief guide on accurately specifying ISA semantics．As a final note，proof assistants－particularly Agda－are an invaluable tool for exploring semantic models，and often help to uncover subtle properties．

[^3]
References

[1] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer's Manual - Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4, April 2022.
[2] Arm Limited, Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile, 2021.

[^0]: ${ }^{\text {A }}$ Notation: x_{10} is in the decimal system whereas x_{2} is in binary.

[^1]: ${ }^{\mathrm{B}}$ We assume bitvectors are not inherently signed or unsigned.

[^2]: ${ }^{\mathrm{C}}$ We use Bv (suc n), because 0-bit bitvectors have no MSB, and thus no $c_{\text {in }}$ and $c_{\text {out }}$.

[^3]: ${ }^{\mathrm{D}} \mathrm{OF}$ is actually called V in Arm

